Galectin-1 regulates neurogenesis in the subventricular zone and promotes functional recovery after stroke.

نویسندگان

  • Satoru Ishibashi
  • Toshihiko Kuroiwa
  • Masanori Sakaguchi
  • Liyuan Sun
  • Toshihiko Kadoya
  • Hideyuki Okano
  • Hidehiro Mizusawa
چکیده

Galectin-1 (Gal-1) has recently been identified as a key molecule that plays important roles in the regulation of neural progenitor cell proliferation in two neurogenic regions: the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone of the hippocampal dentate gyrus. To test the hypothesis that Gal-1 contributes to adult neurogenesis after focal ischemia, we studied the temporal profile of endogenous Gal-1 expression and the effects of human recombinant Gal-1 on neurogenesis and neurological functions in an experimental focal ischemic model. In the normal brain, Gal-1 expression was observed only in the SVZ. In the ischemic brain, Gal-1 expression was markedly upregulated in the SVZ and the area of selective neuronal death around the infarct in the striatum. The temporal profile of Gal-1 expression was correlated with that of neural progenitor cell proliferation in the SVZ of the ischemic hemisphere. Double-labeling studies revealed that Gal-1 was localized predominantly in both reactive astrocytes and SVZ astrocytes. Administration of Gal-1, which is known to have carbohydrate-binding ability, into the lateral ventricle increased neurogenesis in the ipsilateral SVZ and improved sensorimotor dysfunction after focal ischemia. By contrast, blockade of Gal-1 in the SVZ by the administration of anti-Gal-1 neutralizing antibody strongly inhibited neurogenesis and diminished neurological function. These results suggest that Gal-1 is one of the principal regulators of adult SVZ neurogenesis through its carbohydrate-binding ability and provide evidence that Gal-1 protein has a role in the improvement of sensorimotor function after stroke.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of TGF-alpha on Neurogenesis in Subventricular Zone of Rat Brain after Ischemia-Reperfusion

Introduction: Stroke is the third important reason of death in adults and an important cause of adult disability. Previous studies suggest that TGF-alpha can induce neurogenesis after stroke. Here in, we studied neurogenesis effects of the TGF-alpha on subventricular zone following ischemia-reperfusion. Male wistar rats (250-300 g) were divided into ischemia and treatment groups. After inductio...

متن کامل

Bone marrow stromal cells can promote the neurogenesis in subventricular zone in the rat with focal cerebral ischemia

Introdution: Stroke is one of the most common diseases caused by occlusion or rupture of blood vessels in brain. It brings heavily loads for families and societies. Although some new strategies including treatment of tissue plasminogen activator have been applied in the clinic, these methods do not have perfect effect. Accordingly, more effective therapeutic strategies need to be developed...

متن کامل

Sildenafil (Viagra) induces neurogenesis and promotes functional recovery after stroke in rats.

BACKGROUND AND PURPOSE We tested the hypothesis that sildenafil, a phosphodiesterase type 5 (PDE5) inhibitor, promotes functional recovery and neurogenesis after stroke. METHODS Male Wistar rats were subjected to embolic middle cerebral artery occlusion. Sildenafil (Viagra) was administered orally for 7 consecutive days starting 2 or 24 hours after stroke onset at doses of 2 or 5 mg/kg per da...

متن کامل

A neurovascular niche for neurogenesis after stroke.

Stroke causes cell death but also birth and migration of new neurons within sites of ischemic damage. The cellular environment that induces neuronal regeneration and migration after stroke has not been defined. We have used a model of long-distance migration of newly born neurons from the subventricular zone to cortex after stroke to define the cellular cues that induce neuronal regeneration af...

متن کامل

Sonic hedgehog signaling pathway mediates cerebrolysin-improved neurological function after stroke.

BACKGROUND AND PURPOSE Cerebrolysin, a mixture of neurotrophic peptides, enhances neurogenesis and improves neurological outcome in experimental neurodegenerative diseases and stroke. The Sonic hedgehog (Shh) signaling pathway stimulates neurogenesis after stroke. The present study tests whether the Shh pathway mediates cerebrolysin-induced neurogenesis and improves neurological outcome after s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental neurology

دوره 207 2  شماره 

صفحات  -

تاریخ انتشار 2007